If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2-12n-132=0
a = 3; b = -12; c = -132;
Δ = b2-4ac
Δ = -122-4·3·(-132)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-24\sqrt{3}}{2*3}=\frac{12-24\sqrt{3}}{6} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+24\sqrt{3}}{2*3}=\frac{12+24\sqrt{3}}{6} $
| 6x7˟2=4 | | 21x-4=20x+2 | | 2a/3=1 | | n^2-4n-44=0 | | –x+7=–3 | | -7+7(x+3)=0 | | 8x27=4x14 | | 8x3+24x=4x2+12 | | 7y+72=16y | | 5(2x-3)–3(3x-7)=5 | | -4(2c-11=-28 | | –2(w−95)=32 | | 14+5d=69 | | f+4=88 | | j-54=15 | | X2-14x-16=0 | | m-1=68 | | 11x+9-7=2 | | w-27=69 | | 83-12x^2=0 | | 5x/10=-10 | | z-4=63 | | h-36=24 | | 87=r+4 | | 7x=92x-6 | | 3/8h=6 | | -9-8(1=6x)-1 | | f+21=51 | | X/2x+7=61 | | 3x-‘+9=2x-10 | | 4(2y+2)-13=2(5y-4)+15 | | -2+3x+5x-6=8 |